题目内容

【题目】某早餐店每天制作甲、乙两种口味的糕点共n(nN*)份,每份糕点的成本1元,售价2元,如果当天卖不完,剩下的糕点作废品处理.该早餐店发现这两种糕点每天都有剩余,为此整理了过往100天这两种糕点的日销量(单位:份),得到如下的统计数据:

甲口味糕点日销量

48

49

50

51

天数

20

40

20

20

乙口味糕点日销量

48

49

50

51

天数

40

30

20

10

以这100天记录的各销量的频率作为各销量的概率,假设这两种糕点的日销量相互独立.

(1)记该店这两种糕点每日的总销量为X份,求X的分布列

(2)早餐店为了减少浪费,提升利润,决定调整每天制作糕点的份数

①若产生浪费的概率不超过0.6,求n的最大值;

②以销售这两种糕点的日总利润的期望值为决策依据,在每天所制糕点能全部卖完与n=98之中选其一,应选哪个?

【答案】(1)见解析;(2),98.

【解析】试题分析:(1)由题意知 的可能取值为 分别求出相应的概率,由此能求出分布列;(2)①求出 ,由此能求出n的最大值; ②由(1)知在每天所制蛋糕能全部卖完时, ,此时销售这两种糕点的日总利润的期望值为 ,再求出当时,销售这两种糕点的日总利润的期望值,由此得到应选 .

试题解析:(1)X所有可能的取值为96,97,98,99,100,101,102

P(X=96)=0.20.4=0.08

P(X=97)=0.20.3+0.40.4=0.22

P(X=98)= 0.20.2+0.40.3+0.20.4=0.24

P(X=99)= 0.20.1+0.40.2+0.20.3+0.20.4=0.24

P(X=100)= 0.40.1+0.20.2+0.20.3=0.14

P(X=101)= 0.20.1+0.20.2=0.06

P(X=102)= 0.20.1=0.02

X的分布列

X

96

97

98

99

100

101

102

P

0.08

0.22

0.24

0.24

0.14

0.06

0.02

(2)①依题意得,P(X<n)0.6,由P(X<99)=0.54,P(X<100)=0.78,n99

②记销售两种糕点的日总利润为Y,

当每天所制作糕点能全部卖完时,E(Y)96

n=98时,E(Y)=(96-2)0.08+(97-1)0.22+980.7=97.24>96

n=98

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网