题目内容

已知函数f(x)=ex-x
(1)证明:对一切x∈R,都有f(x)≥1
(2)证明:1+
1
2
+
1
3
+…+
1
n
>ln(n+1)(n∈N*).
分析:(1)先求出f′(x)=0的值,再讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值,从而求出函数的最值;
(2)根据(1)的结论可知当x>0时,x>ln(x+1),将1,
1
2
1
3
,…
1
n
分别代入,然后将同向不等式对应相加,化简即可求得.
解答:解:(1)由f′(x)=ex-1=0,得x=0
∵当x∈(-∞,0)时,f′(x)<0
∴f(x)在(-∞,0)上为减函数;
当x∈(0,+∞)时,f′(x)>0
∴f(x)在(0,+∞)上为增函数
∴[f(x)]min=f(0)=1
∴x∈R时,f(x)≥1
(2)由(1)可知:当x>0时,ex>x+1,即x>ln(x+1)
则1>ln2,
1
2
>ln(
1
2
+1)
,,
1
n
>ln(
1
n
+1)

1+
1
2
+
1
3
+…+
1
n
>ln2+ln
3
2
+ln
4
3
+…+ln
n+1
n
=ln(n+1)
点评:本题主要考查了函数恒成立问题,以及利用同向不等式的加法证明不等式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网