题目内容
若一三角形三边所在的直线方程分别为x+2y-5=0,y-2=0,x+y-4=0,则能够覆盖此三角形且面积最小的圆的方程为______.
∵三角形三边所在的直线方程分别为x+2y-5=0,y-2=0,x+y-4=0,
∴可得三角形的三个顶点分别是(1,2),(2,2),(3,1)
能够覆盖此三角形且面积最小是三角形的外接圆,设方程为x2+y2+Dx+Ey+F=0,则
,∴
∴能够覆盖此三角形且面积最小的圆的方程为x2+y2-3x-y=0
故答案为:x2+y2-3x-y=0
∴可得三角形的三个顶点分别是(1,2),(2,2),(3,1)
能够覆盖此三角形且面积最小是三角形的外接圆,设方程为x2+y2+Dx+Ey+F=0,则
|
|
∴能够覆盖此三角形且面积最小的圆的方程为x2+y2-3x-y=0
故答案为:x2+y2-3x-y=0
练习册系列答案
相关题目