ÌâÄ¿ÄÚÈÝ

6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{{\sqrt{2}}}{2}$£¬ÓÒ¶¥µãΪA£¬µãM£¨1£¬0£©ÎªÏ߶ÎOAµÄÖе㣬ÆäÖÐOΪ×ø±êÔ­µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµãMÈÎ×÷Ò»ÌõÖ±Ïß½»ÍÖÔ²CÓÚ²»Í¬µÄÁ½µãE£¬F£¬ÊÔÎÊÔÚxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãN£¬Ê¹µÃ¡ÏENM=¡ÏFNM£¿Èô´æÔÚ£¬Çó³öµãNµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Í¨¹ýµãM£¨1£¬0£©ÎªÏ߶ÎOAµÄÖеã¿ÉÖªb=2£¬ÀûÓÃ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬a2-b2=c2£¬¼ÆËã¼´µÃ½áÂÛ£»
£¨¢ò£© Í¨¹ýÉè´æÔÚµãN£¨x0£¬0£©Âú×ãÌâÉèÌõ¼þ£¬·ÖEFÓëxÖá²»´¹Ö±Óë²»´¹Ö±Á½ÖÖÇé¿öÌÖÂÛ£¬ÀûÓÃΤ´ï¶¨Àí»¯¼ò¡¢¼ÆËã¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨¢ñ£© ÓÉÌâÒâ¿ÉµÃb=2£¬
ÓÖÒòΪ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬a2-b2=c2£¬
ËùÒÔ $a=2\sqrt{2}$£¬
¹ÊËùÇóÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{8}=1$£»
£¨¢ò£© ½áÂÛ£ºÔÚxÖáÉÏ´æÔÚµãN£¨4£¬0£©£¬Ê¹µÃ¡ÏENM=¡ÏFNM£®
ÀíÓÉÈçÏ£º
¼ÙÉè´æÔÚµãN£¨x0£¬0£©Âú×ãÌâÉèÌõ¼þ£¬
£¨1£©µ±EFÓëxÖá²»´¹Ö±Ê±£¬ÉèEFµÄ·½³ÌΪy=k£¨x-1£©£®
Ôò$\left\{\begin{array}{l}y=k£¨x-1£©\\ \frac{x^2}{4}+\frac{y^2}{8}=1\end{array}\right.$ÏûÈ¥y£¬ÕûÀíµÃ£º£¨2+k2£©x2-2k2x+k2-8=0£®
¿ÉÖª¡÷£¾0£¬ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬
Ôò${x_1}+{x_2}=\frac{{2{k^2}}}{{2+{k^2}}}$£¬${x_1}{x_2}=\frac{{{k^2}-8}}{{2+{k^2}}}$£¬
${k_{EN}}+{k_{FN}}=\frac{y_1}{{{x_1}-{x_0}}}+\frac{y_2}{{{x_2}-{x_0}}}=\frac{{k£¨{x_1}-1£©}}{{{x_1}-{x_0}}}+\frac{{k£¨{x_2}-1£©}}{{{x_2}-{x_0}}}$=$\frac{{k£¨{x_1}-1£©£¨{x_2}-{x_0}£©+k£¨{x_2}-1£©£¨{x_1}-{x_0}£©}}{{£¨{x_1}-{x_0}£©£¨{x_2}-{x_0}£©}}$£¬
£¨x1-1£©£¨x2-x0£©+£¨x2-1£©£¨x1-x0£©=2x1x2-£¨1+x0£©£¨x1+x2£©+2x0=$\frac{2£¨{k}^{2}-8£©}{2+{k}^{2}}$-$\frac{2£¨1+{x}_{0}£©{k}^{2}}{2+{k}^{2}}$+2x0£¬
Èô¡ÏENM=¡ÏFNM£¬ÔòkEN+kFN=0£¬$¼´\;k[{\frac{{2£¨{k^2}-8£©}}{{2+{k^2}}}-\frac{{2£¨1+{x_0}£©{k^2}}}{{2+{k^2}}}+2{x_0}}]=0$£¬
ÕûÀíµÃ£ºk£¨x0-4£©=0£¬ÒòΪk¡ÊR£¬ËùÒÔx0=4£»
£¨2£©µ±EF¡ÍxÖáʱ£¬ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ¿ÉÖªºãÓСÏENM=¡ÏFNM£¬Âú×ãÌâÒ⣻
×ÛÉÏ£¬ÔÚxÖáÉÏ´æÔÚµãN£¨4£¬0£©£¬Ê¹µÃ¡ÏENM=¡ÏFNM£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø