题目内容

(2011•广东模拟)给定函数f(x)=
x2
2(x-1)

(1)试求函数f(x)的单调减区间;
(2)已知各项均为负的数列{an}满足,4Sn•f(
1
an
)=1
,求证:-
1
an+1
ln
n+1
n
<-
1
an

(3)设bn=-
1
an
,Tn为数列 {bn} 的前n项和,求证:T2012-1<ln2012<T2011
分析:(1)先写出f(x)=
x2
2(x-1)
的定义域,再求其导数,由f′(x)<0解出单调减区间即可;
(2)由已知可得2Sn=an
-a
2
n
,再由此式得到2Sn-1=an-1
-a
2
n-1
,两式相减得结合已知条件得出an的通项公式,于是,待证不等式即为
1
n+1
<ln
n+1
n
1
n
.为此,我们考虑证明不等式
1
x+1
<ln
x+1
x
1
x
,x>0
,下面利用换元法结合导数工具进行证明.
(3)由(2)可知 bn=
1
n
  则 Tn=1+
1
2
+
1
3
+…+
1
n
,下面只须在
1
n+1
<ln
n+1
n
1
n
中令n=1,2,3…..2010,2011并将各式相加即可.
解答:解:(1)f(x)=
x2
2(x-1)
的定义域为{x|x≠1}…(1分) (此处不写定义域,结果正确不扣分)
f′(x)=
x2-2x
2(x-1)2
…(3分)
由f′(x)<0得0<x<1或1<x<2
单调减区间为(0,1)和(1,2)…(5分)(答案写成(0,2)扣(1分);不写区间形式扣1分)
(2)由已知可得2Sn=an
-a
2
n
,当n≥2时,2Sn-1=an-1
-a
2
n-1

两式相减得(an+an-1)(an-an-1+1)=0
∴an=-an-1或an-an-1=-1
当n=1时,2a1=a1-a12得a1=-1,若an=-an-1,则a2=1这与题设矛盾
∴an-an-1=-1
∴an=-n                   …(8分)
于是,待证不等式即为
1
n+1
<ln
n+1
n
1
n

为此,我们考虑证明不等式
1
x+1
<ln
x+1
x
1
x
,x>0

令1+
1
x
=t.则t>1,x=
1
t-1

再令g(t)=t-1-lnt,g′(t)=1-
1
t
  
由t∈(1,+∞)知g′(t)>0
∴当t∈(1,+∞)时,g(t)单调递增∴g(t)>g(1)=0 于是t-1>lnt
即 
1
x
>ln
x+1
x
,x>0     ①
令h(t)=lnt-1+
1
t
,h′(t)=
1
t
-
1
t2
=
t-1
t2
   由t∈(1,+∞)知h′(t)>0
∴当t∈(1,+∞)时,h(t)单调递增∴h(t)>h(1)=0   于是lnt>1-
1
t

ln
x+1
x
1
x+1
,x>0   ②
由①、②可知
1
x
>ln
x+1
x
1
x+1
,x>0      …(10分)
所以,
1
n+1
<ln
n+1
n
1
n
,即  -
1
an+1
<ln
n+1
n
<-
1
an
  …(11分)
(3)由(2)可知 bn=
1
n
  则 Tn=1+
1
2
+
1
3
+…+
1
n
…(12分)
1
n+1
<ln
n+1
n
1
n
中令n=1,2,3…..2010,2011并将各式相加得
1
2
+
1
3
+…+
1
2012
<ln
2
1
+ln
3
2
+…+ln
2012
2011
<1+
1
2
+
1
3
+…+
1
2011
…(13分)
即     T2012-1<ln2012<T2011…14
点评:本题考查数列和不等式的综合,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网