题目内容
如图,四边形
中,
为正三角形,
,
,
与
交于
点.将
沿边
折起,使
点至
点,已知
与平面
所成的角为
,且
点在平面
内的射影落在
内.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101128033929.png)
(Ⅰ)求证:
平面
;
(Ⅱ)若已知二面角
的余弦值为
,求
的大小.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112491534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112506517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112537579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112553569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112569408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112584385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112600300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112631548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112569408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112662323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112678296.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112693374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112491534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112740302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112678296.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112491534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112631548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101128033929.png)
(Ⅰ)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112818425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112849432.png)
(Ⅱ)若已知二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112865544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112881465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112896288.png)
(Ⅰ)由
为
的中点,可得
,又
,所以
平面
;
(Ⅱ)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112927305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112943387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112959573.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112990561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113005428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112849432.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113037506.png)
试题分析:(Ⅰ)易知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112927305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112943387.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112959573.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112990561.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113161621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113177556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112849432.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113005428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112849432.png)
(Ⅱ)方法一:以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113239372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113255271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113271379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113286313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112600300.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113333479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113349237.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101133644157.png)
直角坐标系,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113380585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113395643.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113411978.png)
易知平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010112849432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113442553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113458753.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101134731047.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113489443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113520673.png)
则由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113536824.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101135511928.png)
解得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101135671243.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113598327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101136141089.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101136292403.png)
解得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113661926.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113676730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113692820.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113707677.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113037506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010113037506.png)
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,本题利用向量法,简化了证明过程。折叠问题,要注意折叠前后“变”与“不变”的量。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目