题目内容

【题目】已知函数f(x)=lnx﹣a(a∈R)与函数 有公共切线. (Ⅰ)求a的取值范围;
(Ⅱ)若不等式xf(x)+e>2﹣a对于x>0的一切值恒成立,求a的取值范围.

【答案】解:(Ⅰ) . ∵函数f(x)与F(x)有公共切线,∴函数f(x)与F(x)的图象相切或无交点.
当两函数图象相切时,设切点的横坐标为x0(x0>0),则
解得x0=2或x0=﹣1(舍去),
则f(2)=F(2),得a=ln2﹣3,
由此求出a≥ln2﹣3,即a的取值范围为[ln2﹣3,+∞).
(Ⅱ)等价于xlnx+a+e﹣2﹣ax≥0在x∈(0,+∞)上恒成立,
令g(x)=xlnx+a+e﹣2﹣ax,
因为g'(x)=lnx+1﹣a,令g'(x)=0,得

x

g'(x)

0

+

g(x)

极小值

所以g(x)的最小值为
,因为
令t'(x)=0,得x=1,且

x

(0,1)

1

(1,+∞)

t'(x)

+

0

t(x)

极大值

所以当a∈(0,1)时,g(x)的最小值
当a∈[1,+∞)时,g(x)的最小值为 =t(2),
所以a∈[1,2].
综上得a的取值范围为(0,2]
【解析】.(Ⅰ) .由函数f(x)与F(x)有公共切线,知函数f(x)与F(x)的图象相切或无交点.由此能求出a的取值范围(Ⅱ)等价于xlnx+a+e﹣2﹣ax≥0在x∈(0,+∞)上恒成立,令g(x)=xlnx+a+e﹣2﹣ax,g'(x)=lnx+1﹣a,令g'(x)=0,得 ,从而求出g(x)的最小值,令 ,由 =0,得x=1,由此能求出a的取值范围.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网