题目内容
由等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4,定义映射f:(a1,a2,a3,a4)→(b1,b2,b3,b4),则f(4,3,2,1)等于
- A.(1,2,3,4)
- B.(0,3,4,0)
- C.(-1,0,2,-2)
- D.(0,-3,4,-1)
D
分析:本题可以采用排除法求解,由题设条件,等式左右两边的同次项的系数一定相等,故可以比较两边的系数来排除一定不对的选项,由于立方项的系数与常数项相对较简单,宜先比较立方项的系数与常数项,由此入手,相对较简.
解答:比较等式两边x3的系数,得4=4+b1,则b1=0,故排除A,C;
再比较等式两边的常数项,有1=1+b1+b2+b3+b4,
∴b1+b2+b3+b4=0.故排除B
故应选D.
点评:排除法做选择题是一种间接法,适合题目条件较多,或者正面证明、判断较困难的题型.
分析:本题可以采用排除法求解,由题设条件,等式左右两边的同次项的系数一定相等,故可以比较两边的系数来排除一定不对的选项,由于立方项的系数与常数项相对较简单,宜先比较立方项的系数与常数项,由此入手,相对较简.
解答:比较等式两边x3的系数,得4=4+b1,则b1=0,故排除A,C;
再比较等式两边的常数项,有1=1+b1+b2+b3+b4,
∴b1+b2+b3+b4=0.故排除B
故应选D.
点评:排除法做选择题是一种间接法,适合题目条件较多,或者正面证明、判断较困难的题型.
练习册系列答案
相关题目