题目内容
【题目】在平面中,△ABC的角C的内角平分线CE分△ABC面积所成的比 = .将这个结论类比到空间:在三棱锥A﹣BCD中,平面DEC平分二面角A﹣CD﹣B且与AB交于E,则类比的结论为 = .
【答案】 ?=
【解析】解:在平面中△ABC的角C的内角平分线CE分△ABC面积所成的比 = ,
将这个结论类比到空间:在三棱锥A﹣BCD中,平面DEC平分二面角A﹣CD﹣B且与AB交于E,
则类比的结论为根据面积类比体积,长度类比面积可得: = ,
所以答案是: = .
【考点精析】认真审题,首先需要了解类比推理(根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理).
练习册系列答案
相关题目
【题目】自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”,“生二孩能休多久产假”等问题成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:
产假安排(单位:周) | 14 | 15 | 16 | 17 | 18 |
有生育意愿家庭数 | 4 | 8 | 16 | 20 | 26 |
(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?
(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.
①求两种安排方案休假周数和不低于32周的概率;
②如果用表示两种方案休假周数之和.求随机变量的分布列及数学期望.