题目内容

(2012•宝鸡模拟)设△ABC的内角A,B,C的对边分别为a,b,c,已知向量,
m
=(a,-c)
n
=(cosA,cosB)
p
=(a,b)
q
=(cos(B+C),cosC)
m
n
=
p
q
,a=
13
,c=4

(1)求cosA的值;
(2)求△ABC的面积S.
分析:(1)由
m
n
=
p
q
化简可得2a•cosA=c•cosB++b•cosC,再由正弦定理可得 2sinAcosA=sinA,求出cosA=
1
2

(2)由(1)可得cosA=
1
2
,A=
π
3
.△ABC中,由余弦定理求出b的值,再根据△ABC的面积S=
1
2
bc•sinA
,运算求得结果.
解答:解:(1)
m
=(a,-c)
n
=(cosA,cosB)
p
=(a,b)
q
=(cos(B+C),cosC)
m
n
=
p
q

∴a•cosA-c•cosB=a•cos(B+C)+b•cosC,即  2a•cosA=c•cosB++b•cosC.
再由正弦定理可得 2sinAcosA=sinCcosB cosCsinB=sin(B+C)=sinA,由于sinA≠0,∴cosA=
1
2

(2)由(1)可得cosA=
1
2
,A=
π
3

△ABC中,由余弦定理可得 13=b2+16-8bcosA=b2+16-4b,解得 b=5或 b=-1 (舍去).
故△ABC的面积S=
1
2
bc•sinA
=5
3
点评:本题主要考查两个向量的数量积公式,以及正弦定理、余弦定理的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网