题目内容
如图,在四面体ABCD中作截面PQR,若PQ,CB的延长线交于M,RQ,DB的延长线交于N,RP,DC的延长线交于K,求证:M,N,K三点共线.
见解析
解析
如图,四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点(1)求证:CE∥平面PAD;(2)求证:平面EFG⊥平面EMN.
如图所示,在正方体ABCDA1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证: (1)BF∥HD1;(2)EG∥平面BB1D1D.
正三棱柱ABCA1B1C1中,已知AB=A1A,D为C1C的中点,O为A1B与AB1的交点. (1)求证:AB1⊥平面A1BD;(2)若点E为AO的中点,求证:EC∥平面A1BD.
如图,棱柱中,四边形是菱形,四边形是矩形,.(1)求证:平面;(2)求点到平面的距离;(3)求直线与平面所成角的正切值.
如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,点M在AD1上移动,点N在BD上移动,D1M=DN=a(0<a<),连接MN.(1)证明对任意a∈(0,),总有MN∥平面DCC1D1.(2)当a为何值时,MN的长最小?
如图,三棱柱ABC-A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中点,F是AB的中点,AC=BC=1,AA1=2.(1)求证:CF∥平面AB1E;(2)求三棱锥C-AB1E在底面AB1E上的高.
如图,中,平面外一条线段AB满足AB∥DE,AB,AB⊥AC,F是CD的中点.(1)求证:AF∥平面BCE(2)若AC=AD,证明:AF⊥平面
直三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.(1)求证:直线AB1⊥平面A1BD.(2)求二面角A-A1D-B正弦值的大小.