题目内容

4.若α∈($\frac{π}{2}$,π),则$\frac{sin2α}{si{n}^{2}α+4co{s}^{2}α}$的最小值为$-\frac{1}{2}$.

分析 变形为$\frac{2tanα}{ta{n}^{2}α+4}$=$\frac{2}{tanα+\frac{4}{tanα}}$,运用基本不等式求解即可.

解答 解:$\frac{sin2α}{si{n}^{2}α+4co{s}^{2}α}$=$\frac{2sinαcosα}{si{n}^{2}α+4co{s}^{2}α}$=$\frac{2tanα}{ta{n}^{2}α+4}$
∵α∈($\frac{π}{2}$,π),tanα≠0,tanα<0,
∴(-tanα)+(-$\frac{4}{tanα}$)≥4,
即tan$α+\frac{4}{tanα}$≤-4,
$\frac{2}{tanα+\frac{4}{tanα}}$$≥-\frac{1}{2}$
∴原式=$\frac{2}{tanα+\frac{4}{tanα}}$的最小值$-\frac{1}{2}$.
故答案为:$-\frac{1}{2}$

点评 本题考查了三角函数的求值问题,基本不等式的求解,关键是恒等变形得出运用基本不等式的条件即可,难度不大,中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网