题目内容
4.若α∈($\frac{π}{2}$,π),则$\frac{sin2α}{si{n}^{2}α+4co{s}^{2}α}$的最小值为$-\frac{1}{2}$.分析 变形为$\frac{2tanα}{ta{n}^{2}α+4}$=$\frac{2}{tanα+\frac{4}{tanα}}$,运用基本不等式求解即可.
解答 解:$\frac{sin2α}{si{n}^{2}α+4co{s}^{2}α}$=$\frac{2sinαcosα}{si{n}^{2}α+4co{s}^{2}α}$=$\frac{2tanα}{ta{n}^{2}α+4}$
∵α∈($\frac{π}{2}$,π),tanα≠0,tanα<0,
∴(-tanα)+(-$\frac{4}{tanα}$)≥4,
即tan$α+\frac{4}{tanα}$≤-4,
$\frac{2}{tanα+\frac{4}{tanα}}$$≥-\frac{1}{2}$
∴原式=$\frac{2}{tanα+\frac{4}{tanα}}$的最小值$-\frac{1}{2}$.
故答案为:$-\frac{1}{2}$
点评 本题考查了三角函数的求值问题,基本不等式的求解,关键是恒等变形得出运用基本不等式的条件即可,难度不大,中档题.
练习册系列答案
相关题目
15.若复数z=x+yi(x,y∈R+,i为虚数单位)满足z-$\frac{6}{z}$是纯虚数,则|z|=( )
A. | 0 | B. | $\sqrt{6}$ | C. | 6 | D. | 2$\sqrt{2}$ |
13.已知离心率为e的双曲线和离心率为$\frac{{\sqrt{2}}}{2}$的椭圆有相同的焦点F1,F2,P是两曲线的一个公共点,若∠F1PF2=$\frac{π}{3}$,则e等于( )
A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | 3 |