题目内容

【题目】在三棱柱中,侧面为矩形, 的中点, 交于点,且平面.

(1)证明:

(2)若,求直线与平面所成角的正弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)证明线线垂直,一般利用线面垂直判定与性质定理,经多次转化得到,而线线垂直的寻找与论证,往往需要结合平几知识进行:如本题就可利用三角形相似得到,再由线面垂直平面得到线线垂直,因此得到平面,即2)由(1)中垂直关系可建立空间直角坐标系,利用空间向量求线面角:先求出各点坐标,表示出直线方向向量,再利用方程组解出平面法向量,利用向量数量积求出向量夹角,最后根据线面角与向量夹角互余关系求解

试题解析:(1)由题意

,又平面

交于点平面,又平面

2

如图,分别以所在直线为轴,以为坐标原点,建立如图所示的空间直角坐标系,则

设平面的法向量为

,即

,则,所以

设直线与平面所成角为,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网