题目内容

17.已知M是满足下列性质的所有函数f(x)组成的集合:对于函数f(x),使得对函数f(x)定义域内的任意两个自变量x1、x2,均有|f(x1)-f(x2)|≤|x1-x2|成立.
(1)已知函数f(x)=x2+1,$x∈[{-\frac{1}{2},\frac{1}{2}}]$,判断f(x)与集合M的关系,并说明理由;
(2)已知函数g(x)=ax+b∈M,求实数a,b的取值范围;
(3)是否存在实数a,使得$p(x)=\frac{a}{x+2}$,x∈[-1,+∞)属于集合M?若存在,求a的取值范围,若不存在,请说明理由.

分析 (1)利用已知条件,通过判断任取${x_1},{x_2}∈[{-\frac{1}{2},\frac{1}{2}}]$,证明|f(x1)-f(x2)|≤|x1-x2|成立,说明f(x)属于集合M.
(2)利用新定义,列出关系式,即可求出实数a,b的取值范围.
(3)通过若p(x)∈M,推出$|{\frac{a}{{{x_1}+2}}-\frac{a}{{{x_2}+2}}}|≤|{{x_1}-{x_2}}|$,然后求解a∈(-∞,-1)∪(1,+∞)时,p(x)∉M.

解答 解:(1)任取${x_1},{x_2}∈[{-\frac{1}{2},\frac{1}{2}}]$,$|{f({x_1})-f({x_2})}|=|{{x_1}^2-{x_2}^2}|=|{{x_1}+{x_2}}||{{x_1}-{x_2}}|$
∵$-\frac{1}{2}≤{x_1},{x_2}≤\frac{1}{2}$,∴-1≤x1+x2≤1,∴0≤|x1+x2|≤1
∴|x1+x2||x1-x2|≤|x1-x2|
即|f(x1)-f(x2)|≤|x1-x2|成立,f(x)属于集合M…(4分)
(2)∵g(x)=ax+b∈M,
∴使得任意x1、x2∈R,均有|g(x1)-g(x2)|≤|x1-x2|成立.
即存在|g(x1)-g(x2)|=|a||x1-x2|≤|x1-x2|
∴$\left\{\begin{array}{l}-1≤a≤1\\ b∈R\end{array}\right.$…(10分)
(3)若p(x)∈M,则|p(x1)-p(x2)|≤|x1-x2|对任意的x1、x2∈[-1,+∞)都成立.
即$|{\frac{a}{{{x_1}+2}}-\frac{a}{{{x_2}+2}}}|≤|{{x_1}-{x_2}}|$,
∴|a|≤|(x1+2)(x2+2)|
∵x1、x2∈[-1,+∞),∴|(x1+2)(x2+2)|≥1,
∴|a|≤1,-1≤a≤1
∴当a∈[-1,1]时,p(x)∈M;
当a∈(-∞,-1)∪(1,+∞)时,p(x)∉M.…(18分)

点评 本题考查新定义的应用,函数与方程的综合应用,考查分析问题解决问题的能力、

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网