搜索
题目内容
甲乙两人进行相棋比赛,甲获胜的概率是0.4,两人下成和棋的概率是0.2,则甲不输的概率是( )
A.0.6
B.0.8
C.0.2
D.0.4
试题答案
相关练习册答案
A
略
练习册系列答案
全程考评期末一卷通系列答案
小学课堂练习合肥工业大学出版社系列答案
高中总复习导与练系列答案
随堂1加1导练系列答案
零距离学期系统总复习期末暑假衔接合肥工业大学出版社系列答案
期末冲刺100分创新金卷完全试卷系列答案
北大绿卡刷题系列答案
五州图书超越假期暑假内蒙古大学出版社系列答案
冲刺名校小考系列答案
黄冈中考考点突破系列答案
相关题目
设甲、乙两人每次射击命中目标的概率分别为
和
,且各次射击相互独立,若按甲、乙、甲、乙、…的次序轮流射击,直到有一人击中目标就停止射击,则射击停止时,甲射击了两次的概率是 ( )
A.
B.
C.
D.
(本小题12分)
有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验
:用
表示结果,其中
表示投掷第1颗正四面体玩具落在底面的数字,
表示投掷第2颗正四面体玩具落在底面的数字。
(1)写出试验的基本事件;
(2)求事件“落在底面的数字之和大于3”的概率;
(3)求事件“落在底面的数字相等”的概率。
(本小题满分12分)
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村
到
年十年间每年考入大学的人数.
为方便计算,
年编号为
,
年编号为
,…,
年编号为
.数据如下:
(Ⅰ)从这
年中随机抽取两年,求考入大学人数至少有
年多于
人的概率;
(Ⅱ)根据前
年的数据,利用最小二乘法求出
关于
的回归方程
,并计算第
年的估计值和实际值之间的差的绝对值.
(本小题满分14分)
将一颗骰子先后抛掷2次,观察向上的点数,求:
(Ⅰ)两数之和为5的概率;
(Ⅱ)以第一次向上
点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆
=15的内部的概率.
(本小题满分12分)
某学校要用鲜花布置花圃中
五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.
(1)当
区域同时用红色鲜花时,求布置花圃的不同方法的种数;
(2)求恰
有两个区域用红色鲜花的概率;
(3)记
为花圃中用红色鲜花布置的区域的个数,求随机变量
的分布列及其数学期望
.
一个人随机的将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为
,则
的期望E
=
.
(本小题满分12分)
在医学生物学实验中,经常以小老鼠作为实验对象.在甲笼子里关有7只小老鼠(其中5只白色的,2只灰色的),由于都感染了某种烈性病菌,所以想让它们自行分开.以便于进行观察、试验.现有乙笼子是空的,把甲笼子打开一个小孔(只能让小鼠钻出去,再进不来),让小鼠一只一只地往乙笼子跑(假定它们都会争先恐后地从小孔往乙笼跑),直到两只小灰鼠都跑出甲笼子,立即关闭小孔.以f表示甲笼子里还剩下的小白鼠的数目
(1) 求乙笼子里恰好只有2只小灰鼠的概率;
(2) 求
的分布列与数学期望.
(本小题共〖2分)(注意:在试题卷上作答无效)
某班拟从两名同学中选一人参加学校知识竞赛,现设计一个预选方案:选手从五道题中一次性随机
抽取三道进行回答,已知甲五道题中只会三道,
乙每道题答对的概率都是3/5,且每道题答对与否互不影响.
(1) 分别求出甲乙两人答对题数的概率分布
;
(2) 你认为派谁参加比赛更合适.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总