题目内容
【题目】已知函数
(Ⅰ)若曲线与曲线在它们的某个交点处具有公共切线,求的值;
(Ⅱ)若存在实数使不等式的解集为,求实数的取值范围
(Ⅲ)若方程有三个不同的解,且它们可以构成等差数列,写出实数的值(只需写出结果).
【答案】(Ⅰ)或;(Ⅱ)或;(Ⅲ)的值为.
【解析】试题分析:(Ⅰ)设出切点坐标,联立两曲线方程,求出切点坐标和值;(Ⅱ)分离参数,通过作差构造函数,将问题转化为的图像在直线下方的部分对应点的横坐标,再通过导函数的符号变化确定函数的单调性和最值即可求解;(Ⅲ)再次求导,利用等差中项直接写出结果.
试题解析:(Ⅰ)设与的交点坐标为由
解得或
解得的值为或
(Ⅱ)令则的图像在直线下方的部分对应点的横坐标
由解得的值
的情况如下:
3 | |||||
+ | 0 | — | 0 | + | |
增 | 极大值 | 减 | 极小值 | 增 |
因为
即;
即
所以当或满足条件.
(Ⅲ)由(Ⅱ)
则令可知,此时,函数的对称中心为:
方程有三个不同的解且它们可以构成等差数列,实数的值为
练习册系列答案
相关题目