题目内容
【题目】若存在正常数a,b,使得x∈R有f(x+a)≤f(x)+b恒成立,则称f(x)为“限增函数”.给出下列三个函数:①f(x)=x2+x+1;② ;③f(x)=sin(x2),其中是“限增函数”的是( )
A.①②③
B.②③
C.①③
D.③
【答案】B
【解析】解:对于①,f(x+a)≤f(x)+b可化为:(x+a)2+(x+a)+1≤x2+x+1+b, 即2ax≤﹣a2﹣a+b,即x≤ 对一切x∈R均成立,
由函数的定义域为R,故不存在满足条件的正常数a、b,故f(x)=x2+x+1不是“限增函数”;
对于②,若f(x)= 是“限增函数”,则f(x+a)≤f(x)+b可化为: ≤ +b,
∴|x+a|≤|x|+b2+2b 恒成立,又|x+a|≤|x|+a,∴|x|+a≤|x|+b2+2b ,∴ ≥ ,
显然当a<b2时式子恒成立,∴f(x)= 是“限增函数”;
对于③,∵﹣1≤f(x)=sin(x2)≤1,∴f(x+a)﹣f(x)≤2,
∴当b≥2时,a为任意正数,使f(x+a)≤f(x)+b恒成立,故f(x)=sin(x2)是“限增函数”.
故选B.
【考点精析】通过灵活运用全称命题,掌握全称命题:,,它的否定:,;全称命题的否定是特称命题即可以解答此题.
【题目】2016世界特色魅力城市200强新鲜出炉,包括黄山市在内的28个中国城市入选.美丽的黄山风景和人文景观迎来众多宾客.现在很多人喜欢自助游,某调查机构为了了解“自助游”是否与性别有关,在黄山旅游节期间,随机抽取了100人,得如下所示的列联表:
赞成“自助游” | 不赞成“自助游” | 合计 | |
男性 | 30 | ||
女性 | 10 | ||
合计 | 100 |
(1)若在100这人中,按性别分层抽取一个容量为20的样本,女性应抽11人,请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料能否在犯错误的概率不超过0.05前提下,认为赞成“自助游”是与性别有关系?
(2)若以抽取样本的频率为概率,从旅游节游客中随机抽取3人赠送精美纪念品,记这3人中赞成“自助游”人数为X,求X的分布列和数学期望. 附:K2=
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |