题目内容
【题目】对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0 , 则x0= .
【答案】2
【解析】解:因为g(I)={y|y=g(x),x∈I},f﹣1([0,1))=[1,2),f﹣1(2,4])=[0,1),
所以对于函数f(x),
当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)﹣x=0即f(x)=x无解;
当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)﹣x=0即f(x)=x无解;
所以当x∈[0,2)时方程f(x)﹣x=0即f(x)=x无解,
又因为方程f(x)﹣x=0有解x0 , 且定义域为[0,3],
故当x∈[2,3]时,f(x)的取值应属于集合(﹣∞,0)∪[1,2]∪(4,+∞),
故若f(x0)=x0 , 只有x0=2,
所以答案是:2.
【考点精析】关于本题考查的函数的零点,需要了解函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能得出正确答案.
练习册系列答案
相关题目