题目内容
求证:a2+b2≥ab+a+b-1.
见解析
∵(a2+b2)-(ab+a+b-1)=a2+b2-ab-a-b+1
=(2a2+2b2-2ab-2a-2b+2)
=[(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)]
=[(a-b)2+(a-1)2+(b-1)2]≥0.
∴a2+b2≥ab+a+b-1.
=(2a2+2b2-2ab-2a-2b+2)
=[(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)]
=[(a-b)2+(a-1)2+(b-1)2]≥0.
∴a2+b2≥ab+a+b-1.
练习册系列答案
相关题目