题目内容
若sin=,则sin=______.
-
【解析】sin=-cos=-cos=2sin2-1=-.
已知数列{an}的前n项和为Sn,且满足Sn=n2,数列{bn}满足bn=,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式an和Tn;
(2)若对任意的n∈N*,不等式λTn<n+(-1)n恒成立,求实数λ的取值范围.
设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m等于( ).
A.5 B.6 C.7 D.8
如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为______.
已知函数f(x)=sin +cos,g(x)=2sin2.
(1)若α是第一象限角,且f(α)=.求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.
将函数y=sin的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为( ).
A.y=sin B.y=sin
C.y=sinx D.y=sin
设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)( ).
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值又有极小值
D.既无极大值也无极小值
已知函数f(x)=ax3-x2+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=x2-bx+-,解不等式f′(x)+h(x)<0.
连续向一目标射击,直至击中为止,已知一次射击命中目标的概率为则射击次数为3的概率为( ).
A. B. C. D.