题目内容
【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当BMI数值大于或等于20.5时,我们说体重较重;当
数值小于20.5时,我们说体重较轻;身高大于或等于170
的我们说身高较高;身高小于170
的我们说身高较矮.
(1)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图所示,请根据所得信息,完成下列列联表,并判断是否有95%的把握认为男体育特长生的身高对
指数有影响;
身高较矮 | 身高较高 | 合计 | |
体重较轻 | |||
体重较重 | |||
合计 |
(2)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如下表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献率
(保留两位有效数字);
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 | 0.1 | 0.3 | 0.9 | -1.5 | -0.5 |
②通过残差分析,对于残差(绝对值)最大的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58(kg).请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.
(参考公式)
,
,
,
,
(
).
| 0.10 | 0.05 | 0.01 | 0.005 |
2.706 | 3.841 | 6.635 | 7.879 |
(参考数据)
,
,
,
,
,
,
.
【答案】(1)见解析,没有(2)①见解析,约为0.91②
【解析】
(1)根据散点图即可完成列联表;套用公式(
),算出观测值,与3.841作比较,即可得到本题答案;
(2)①把分别代入
,即可完善下列残差表;然后套用公式
,即可得到本题答案;
②由①可知,第八组数据的体重应为58,套用,
,即可得到本题答案.
(1)
身高较矮 | 身高较高 | 合计 | |
体重较轻 | 6 | 15 | 21 |
体重较重 | 6 | 5 | 11 |
合计 | 12 | 20 | 32 |
由于
因此没有的把握认为男体育特长生的身高对
指数有影响.
(2)①
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 | 0.1 | 0.3 | 0.9 | -1.5 | -0.5 | -2.3 | -0.5 | 3.5 |
,
所以解释变量(身高)对于预报变量(体重)变化的贡献率约为0.91.
②由①可知,第八组数据的体重应为58.
此时,
又,
,
,
,
,
所以重新采集数据后,男体育特长生的身高与体重的线性回归方程为.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】2019年上半年我国多个省市暴发了“非洲猪瘟”疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就“一天中一头猪的平均成本与生猪存栏数量之间的关系”进行研究.现相关数据统计如下表:
生猪存栏数量 | 2 | 3 | 4 | 5 | 8 |
头猪每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究员甲根据以上数据认为与
具有线性回归关系,请帮他求出
关于
的线.性回归方程
(保留小数点后两位有效数字)
(2)研究员乙根据以上数据得出与
的回归模型:
.为了评价两种模型的拟合效果,请完成以下任务:
①完成下表(计算结果精确到0.01元)(备注:称为相应于点
的残差);
生猪存栏数量 | 2 | 3 | 4 | 5 | 8 | |
头猪每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估计值 | |||||
残差 | ||||||
模型乙 | 估计值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
残差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分别计算模型甲与模型乙的残差平方和及
,并通过比较
的大小,判断哪个模型拟合效果更好.
(3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)
参考公式:.
参考数据:.