题目内容
【题目】已知向量,,函数
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)将函数f(x)的图象平移后得到函数g(x)的图象,求g(x)在区间上的最值.
【答案】(Ⅰ)[kπ,kπ],k∈Z.(Ⅱ)最大值为3.最小值为﹣1;
【解析】
(Ⅰ)利用数量积的坐标表示,得到2sinxcosx+2cos2x。利用二倍角公式和辅助角公式将转化为正弦型函数,求出单调递减区间即可.
(Ⅱ)按照要求平移得到g(x)=2sin(2x)+1,由x∈得到2x∈[,π],根据正弦函数图像,得到最大值,最小值即可.
(Ⅰ)∵向量,,
函数
=2sinxcosx+2cos2x
sin2x+cos2x+1=2sin(2x)+1,
令2kπ2x2kπ,求得kπx≤kπ,
可得函数f(x)的单调减区间为[kπ,kπ],k∈Z.
(Ⅱ)将函数f(x)=2sin(2x)+1的图象按平移后得到函数g(x)的图象,
可得g(x)=2sin(2x)+1=2sin(2x)+1,
在区间x∈上,2x∈[0,π],2x∈[,π],
故当x=0时,g(x)取得最小值为﹣1;
当x时,g(x)取得最大值为3.
【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当BMI数值大于或等于20.5时,我们说体重较重;当数值小于20.5时,我们说体重较轻;身高大于或等于170的我们说身高较高;身高小于170的我们说身高较矮.
(1)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图所示,请根据所得信息,完成下列列联表,并判断是否有95%的把握认为男体育特长生的身高对指数有影响;
身高较矮 | 身高较高 | 合计 | |
体重较轻 | |||
体重较重 | |||
合计 |
(2)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如下表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高() | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献率 (保留两位有效数字);
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 | 0.1 | 0.3 | 0.9 | -1.5 | -0.5 |
②通过残差分析,对于残差(绝对值)最大的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58(kg).请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.
(参考公式)
,,
,,
().
() | 0.10 | 0.05 | 0.01 | 0.005 |
2.706 | 3.841 | 6.635 | 7.879 |
(参考数据)
,,,,,
,.
【题目】为了整顿道路交通秩序,某地考虑对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通人中随机抽取200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:
处罚金额(单位:元) | 5 | 10 | 15 | 20 |
会闯红灯的人数 | 50 | 40 | 20 | 0 |
若用表中数据所得频率代替概率.
(1)当处罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其它市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?