题目内容
已知函数f(x)=x3-ax2-3x.
(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-是f(x)的极值点,求f(x)在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-是f(x)的极值点,求f(x)在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
(1)a≤0(2)f(x)在[1,4]上的最大值是f(1)=-6(3)存在符合条件的实数b,b的范围为b>-7且b≠- 3
(1)f′(x)=3x2-2ax-3
∵f(x)在[1,+∞)上是增函数,
∴f′(x)在[1,+∞)上恒有f′(x)≥0,
即3x2-2ax-3≥0在[1,+∞)上恒成立
则必有≤1且f′(1)=-2a≥0,∴a≤0.
(2)依题意,f′(-)=0,即+a-3=0
∴a=4,∴f(x)=x3-4x2-3x
令f′(x)=3x2-8x-3=0,
得x1=-,x2=3.则
当x变化时,f′(x),f(x)的变化情况如下表:
∴f(x)在[1,4]上的最大值是f(1)=-6.
(3)函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,即方程x3-4x2-3x=bx恰有3个不等实根
∴x3-4x2-3x-bx=0,∴x=0是其中一个根,
∴方程x2-4x-3-b=0有两个非零不等实根,
∴,∴b>-7且b≠-3.
∴存在符合条件的实数b,b的范围为b>-7且b≠- 3.
∵f(x)在[1,+∞)上是增函数,
∴f′(x)在[1,+∞)上恒有f′(x)≥0,
即3x2-2ax-3≥0在[1,+∞)上恒成立
则必有≤1且f′(1)=-2a≥0,∴a≤0.
(2)依题意,f′(-)=0,即+a-3=0
∴a=4,∴f(x)=x3-4x2-3x
令f′(x)=3x2-8x-3=0,
得x1=-,x2=3.则
当x变化时,f′(x),f(x)的变化情况如下表:
x | 1 | (1,3) | 3 | (3,4) | 4 |
| - | 0 | + | | |
f (x) | -6 | -18 | -12 |
(3)函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,即方程x3-4x2-3x=bx恰有3个不等实根
∴x3-4x2-3x-bx=0,∴x=0是其中一个根,
∴方程x2-4x-3-b=0有两个非零不等实根,
∴,∴b>-7且b≠-3.
∴存在符合条件的实数b,b的范围为b>-7且b≠- 3.
练习册系列答案
相关题目