题目内容

已知球的体积为V,在它里面有一个轴截面顶角为2θ的内接圆锥(如图),求圆锥的体积.

解析:设圆锥的底面半径为r,球心O到圆锥底面距离为x,

则有r=Rsin2θ,x=Rcos2θ.

∴V圆锥=πr2·(R+x)=R2sin22θ(R+Rcos2θ)=πR3(sin22θ·cos2θ)=Vsin22θcos2θ.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网