题目内容

【题目】满足a,b∈{﹣1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对的个数为( )
A.14
B.13
C.12
D.10

【答案】B
【解析】解:(1)当a=0时,方程为2x+b=0,此时一定有解;
此时b=﹣1,0,1,2;即(0,﹣1),(0,0),(0,1),(0,2)四种.
(2)当a≠0时,方程为一元二次方程,
∴△=4﹣4ab≥0,
∴ab≤1.所以a=﹣1,1,2,此时a,b的对数为(﹣1,0),(﹣1,2),(﹣1,﹣1),(﹣1,1),(1,﹣1),(1,0),(1,1),(2,﹣1),(2,0),共9种,
关于x的方程ax2+2x+b=0有实数解的有序数对的个数为13种,
故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网