题目内容

【题目】已知函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分图象如图所示
(Ⅰ)求A,ω,φ的值;
(Ⅱ)求f(x)的单调增区间.

【答案】解:(Ⅰ)根据函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分图象,

可得A=1, =3﹣(﹣1)=4= ,∴ω=

结合五点法作图可得 (﹣1)+φ=0,∴φ= ,f(x)=sin( x+ ).

(Ⅱ)令2kπ﹣ x+ ≤2kπ+ ,求得8k﹣3≤x≤8k+1,可得函数的增区间为[8k﹣3,8k+1],k∈Z


【解析】(Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)由题意利用正弦函数的单调区间,求得f(x)的单调增区间.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网