题目内容

13.在平面直角坐标系xOy中,点A(0,3),直线l:2x-y-4=0,设圆C的半径为1,圆心在直线l上.
(1)若圆心C也在直线2x-3y=0上,过点A作圆C的切线,求切线的方程;
(2)若圆C与圆D:x2+y2+2y-3=0有公共点,求圆心C的横坐标a的取值范围.

分析 (1)联立直线l与直线y=x-1解析式,求出方程组的解得到圆心C坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;
(2)求出圆D:x2+y2+2y-3=0的圆心与半径,利用圆心距与半径和与差的关系,列出不等式,即可求出圆心C的横坐标a的取值范围.

解答 解:(1)联立得:$\left\{\begin{array}{l}2x-y-4=0\\ 2x-3y=0\end{array}\right.$,
解得:$\left\{\begin{array}{l}x=3\\ y=2\end{array}\right.$,
∴圆心C(3,2).
若k不存在,不合题意;
若k存在,设切线为:y=kx+3,可得圆心到切线的距离d=r,即$\frac{|3k+3-2|}{\sqrt{1+{k}^{2}}}$=1,
解得:k=0或k=-$\frac{3}{4}$,
则所求切线为y=3或y=-$\frac{3}{4}$x+3;
(2)圆D:x2+y2+2y-3=0的圆心(0,-1),半径为:2.
圆C的半径为1,圆心在直线l:2x-y-4=0上,可得圆心(a,2a-4).
圆C与圆D:x2+y2+2y-3=0有公共点,可得1≤$\sqrt{(a-0)^{2}+(2a-4+1)^{2}}≤3$,
解得0≤a≤$\frac{12}{5}$.
圆心C的横坐标a的取值范围:[0,$\frac{12}{5}$].

点评 此题考查了圆的切线方程,点到直线的距离公式,以及圆与圆的位置关系的判定,涉及的知识有:两直线的交点坐标,直线的点斜式方程,两点间的距离公式,圆的标准方程,是一道综合性较强的试题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网