题目内容

14、设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是
m≥2
.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是
-1≤a≤1
分析:根据“存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数”的定义,对于定义域为[-1,+∞)的函数f(x)=x2为m高调函数,易知f(-1)=f(1),故得m≥1-(-1),即m≥2;定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,画出函数图象,可得4≥3a2-(-a2)?-1≤a≤1.
解答:解:∵f(-1)=f(1),m≥1-(-1),即m≥2,
f(x)=|x-a2|-a2的图象如图,∴4≥3a2-(-a2)?-1≤a≤1.
故答案为:m≥2;-1≤a≤1
点评:考查学生的阅读能力,很应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网