题目内容

【题目】从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.
(1)共有多少种不同的排法?
(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)

【答案】解:(1)从4名男生中选出2人,有C42种结果,
从6名女生中选出3人,有C63种结果,
根据分步计数原理知选出5人,再把这5个人进行排列共有C42C63A55=14400
(2)在选出的5个人中,若2名男生不相邻,
则第一步先排3名女生,第二步再让男生插空,
根据分步计数原理知共有C42C63A33A42=8640.
答:(1)共有14400种不同的排列法.
(2)选出的2名男同学不相邻,共有8640种不同的排法
【解析】(1)从4名男生中选出2人,有C42种结果,从6名女生中选出3人,有C63种结果,根据分步计数原理知选出5人,再把这5个人进行排列,写出结果.
(2)由题意知本题是一个分步计数原理,在选出的5个人中,若2名男生不相邻,则第一步先排3名女生,第二步再让男生插空,根据分步原理得到结果.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网