题目内容
13.$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$)=$\frac{1}{3}$.分析 化简$\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$=$\frac{3{n}^{3}-3{n}^{2}-4n-4}{(3{n}^{2}+n)(3n+4)}$,从而解得.
解答 解:∵$\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$=$\frac{3{n}^{3}-3{n}^{2}-4n-4}{(3{n}^{2}+n)(3n+4)}$,
∴$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$)=$\underset{lim}{n→∞}$$\frac{3{n}^{3}-3{n}^{2}-4n-4}{(3{n}^{2}+n)(3n+4)}$
=$\underset{lim}{n→∞}$$\frac{3-\frac{3}{n}-\frac{4}{{n}^{2}}-\frac{4}{{n}^{3}}}{(3+\frac{1}{n})(3+\frac{4}{n})}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.
点评 本题考查了学生的化简能力与极限的求法.
练习册系列答案
相关题目
4.f(x)是定义在R上的奇函数,f(-3)=2,则下列各点在函数f(x)图象上的是( )
A. | (3,-2) | B. | (3,2) | C. | (-3,-2) | D. | (2,-3) |
4.f (x)=$\sqrt{{x}^{2}-2}$+$\sqrt{2-{x}^{2}}$ 的奇偶性是( )
A. | 奇函数 | B. | 偶函数 | C. | 既奇又偶函数 | D. | 非奇非偶函数 |