题目内容
【题目】设双曲线x2﹣ =1的左、右焦点分别为F1、F2 , 若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是
【答案】( )
【解析】解:如图,
由双曲线x2﹣ =1,得a2=1,b2=3,
∴ .
不妨以P在双曲线右支为例,当PF2⊥x轴时,
把x=2代入x2﹣ =1,得y=±3,即|PF2|=3,
此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;
由PF1⊥PF2 , 得 ,
又|PF1|﹣|PF2|=2,①
两边平方得: ,
∴|PF1||PF2|=6,②
联立①②解得: ,
此时|PF1|+|PF2|= .
∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是( ).
所以答案是:( ).
【题目】某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册) | 2 | 3 | 4 | 5 | 8 |
单册成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数(千册) | 2 | 3 | 4 | 5 | 8 | |
单册成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较, 的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)