题目内容
设F1、F2是椭圆![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_ST/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_ST/1.png)
A.1
B.0
C.
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_ST/2.png)
D.2
【答案】分析:由题意,算出椭圆的焦点坐标,根据三角形面积公式算出P的纵坐标为
,从而得到第一象限内满足条件的点P坐标,从而得到向量
的坐标,算出则
的值.
解答:解:∵椭圆
中,a=2,b=1
∴c=
=
,得椭圆的焦点为F1(-
,0),F2(
,0)
设P的纵坐标为n,则△F1PF2的面积为S=
|F1F2|×n=1,
即
×
,解之得n=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/11.png)
由椭圆的对称性,设P为第一象限的点,求得P的坐标为(
,
)
∴
,![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/15.png)
可得
=(-
-
)(
-
)+(-
)(-
)=
-3+
=0
故选:B
点评:本题给出椭圆的焦点三角形的面积,求数量积
的值.着重考查了椭圆的定义与标准方程、向量的数量积等知识,属于中档题.
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/1.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/2.png)
解答:解:∵椭圆
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/3.png)
∴c=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/4.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/5.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/6.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/7.png)
设P的纵坐标为n,则△F1PF2的面积为S=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/8.png)
即
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/9.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/10.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/11.png)
由椭圆的对称性,设P为第一象限的点,求得P的坐标为(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/12.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/13.png)
∴
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/14.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/15.png)
可得
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/16.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/17.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/18.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/19.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/20.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/21.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/22.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/23.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/24.png)
故选:B
点评:本题给出椭圆的焦点三角形的面积,求数量积
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175100192509103/SYS201311031751001925091009_DA/25.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目