题目内容
直线l过点P(-2,3),且与x轴、y轴分别交于A、B两点,若点P恰为AB的中点,求直线l的方程.
直线l的方程.3x-2y+12=0.
解析:
设A(x,0)、B(0,y).
∵点P恰为AB的中点,则.
∴x=-4,y=6.
即A、B两点的坐标为(-4,0)、(0,6).
由截距式得直线l的方程为,
即为3x-2y+12=0.
练习册系列答案
相关题目
题目内容
直线l过点P(-2,3),且与x轴、y轴分别交于A、B两点,若点P恰为AB的中点,求直线l的方程.
直线l的方程.3x-2y+12=0.
设A(x,0)、B(0,y).
∵点P恰为AB的中点,则.
∴x=-4,y=6.
即A、B两点的坐标为(-4,0)、(0,6).
由截距式得直线l的方程为,
即为3x-2y+12=0.