题目内容
【题目】已知,,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.
(1)求曲线的方程;
(2)若过点的直线与曲线交于,两点,过点且与直线垂直的直线与相交于点,求的最小值及此时直线的方程.
【答案】(1)(2)的最小值为1,此时直线:
【解析】
(1)用直接法求轨迹方程,即设动点为,把已知用坐标表示并整理即得.注意取值范围;
(2)设:,将其与曲线的方程联立,消元并整理得,
设,,则可得,,由求出,
将直线方程与联立,得,求得,计算,设.显然,构造,由导数的知识求得其最小值,同时可得直线的方程.
(1)设,则,即
整理得
(2)设:,将其与曲线的方程联立,得
即
设,,则,
将直线:与联立,得
∴
∴
设.显然
构造
在上恒成立
所以在上单调递增
所以,当且仅当,即时取“=”
即的最小值为1,此时直线:.
(注:1.如果按函数的性质求最值可以不扣分;2.若直线方程按斜率是否存在讨论,则可以根据步骤相应给分.)
练习册系列答案
相关题目