题目内容

【题目】设a,b,c均为正数,且a+b+c=1.证明:
(1)
(2)

【答案】
(1)证明:∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,

∴a2+b2+c2≥ab+bc+ac,①

又a+b+c=1,

∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac=1,②

由①②得:3(ab+bc+ac)≤1,

∴ab+bc+ac≤


(2)证明:∵a,b,c均为正数,

+b≥2a, +c≥2b, +a≥2c,

+ +a+b+c≥2(a+b+c),

+ ≥a+b+c,a+b+c=1,

+ ≥1


【解析】(1)由a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,a+b+c=1即可证得ab+bc+ac≤ ;(2)由 +b≥2a, +c≥2b, +a≥2c,a+b+c=1即可证得结论.
【考点精析】利用不等式的证明对题目进行判断即可得到答案,需要熟知不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网