题目内容
正四面体ABCD的棱长为1,棱AB∥平面α,则正四面体上所有点在平面α内的射影所构成的图形面积的取值范围为分析:首先想象一下,当正四面体绕着与平面平行的一条边转动时,不管怎么转动,投影的三角形的一个边始终是AB的投影,长度是1,而发生变化的是投影的高,体会高的变化,得到结果.,投影面积最大应是线段AB相对的侧棱与投影面平行时取到,投影面的最小值应在正四面体的一面与投影面垂直时取到.
解答:解:由题意当线段AB相对的侧棱与投影面平行时投影最大,此时投影是关于线段AB对称的两个等腰三角形,
由于正四面体的棱长都是1,故投影面积为
×1×1=
当正四面体的与AB平行的棱与投影面垂直时,此时投影面面积最小,
此时投影面是一个三角形,其底面边长为线段AB的投影,长度为1,此三角形的高是AB,CD两线之间的距离,取CD的中点为M,连接MA,MB可解得MA=MB=
,再取AB中点N,连接MN,此线段长度即为AB,CD两线之间的距离,可解得MN=
,此时投影面的面积是
×
×1=
,
故投影面的取值范围是[
,
]
故答案为[
,
]
由于正四面体的棱长都是1,故投影面积为
1 |
2 |
1 |
2 |
当正四面体的与AB平行的棱与投影面垂直时,此时投影面面积最小,
此时投影面是一个三角形,其底面边长为线段AB的投影,长度为1,此三角形的高是AB,CD两线之间的距离,取CD的中点为M,连接MA,MB可解得MA=MB=
| ||
2 |
| ||
2 |
1 |
2 |
| ||
2 |
| ||
4 |
故投影面的取值范围是[
| ||
4 |
1 |
2 |
故答案为[
| ||
4 |
1 |
2 |
点评:本题考查平行投影及平行投影作图法,本题是一个计算投影面积的题目,注意解题过程中的投影图的变化情况,本题是一个中档题
练习册系列答案
相关题目
正四面体ABCD的棱长为1,G是△ABC的中心,M在线段DG上,且∠AMB=90°,则GM的长为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|