题目内容
【题目】已知为等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,若成等比数列,求正整数的值。
【答案】:(Ⅰ)(Ⅱ)
【解析】
试题(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得 a1=2,d=2,从而得到{an}的通项公式.
(Ⅱ) 由(Ⅰ)可得 {an}的前n项和为Sn ==n(n+1),再由=a1Sk+2 ,求得正整数k的值.
解:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得 a1=2,d=2.
∴{an}的通项公式 an =2+(n﹣1)2=2n.
(Ⅱ) 由(Ⅰ)可得 {an}的前n项和为Sn ==n(n+1).
∵若a1,ak,Sk+2成等比数列,∴=a1Sk+2 ,
∴4k2 =2(k+2)(k+3),k="6" 或k=﹣1(舍去),故 k=6.
练习册系列答案
相关题目
【题目】某研究机构对高三学生的记忆力和判断力进行统计分析,得下表数据:
6 | 8 | 10 | 12 | |
2 | 3 | 5 | 6 |
(1)请在图中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.
相关公式:,.
【题目】某地西红柿从2月1号起开始上市,通过市场调查,得到西红柿种植成本(单位:元/100)与上市时间(距2月1日的天数,单位:天)的数据如下表:
时间 | 50 | 110 | 250 |
成本 | 150 | 108 | 150 |
(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本与上市时间的变化关系:;
(2)利用(1)中选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.