题目内容
8.已知抛物线y=(k-1)x2+2kx+k-1,若抛物线与x轴交于A、B两点.与y轴交于C点,且△ABC的面积为4.试求k的值.分析 令x=0,可得y=k-1,令y=0,可得|x1-x2|=$\sqrt{\frac{4{k}^{2}}{(1-k)^{2}}-4}$,利用△ABC的面积为4,建立方程,即可求k的值.
解答 解:抛物线与x轴交于A(x1,0),B(x2,0),令y=0,可得(k-1)x2+2kx+k-1=0,
∴x1+x2=$\frac{2k}{1-k}$,x1x2=1,
∴|x1-x2|=$\sqrt{\frac{4{k}^{2}}{(1-k)^{2}}-4}$,
令x=0,可得y=k-1,
∵△ABC的面积为4,
∴$\frac{1}{2}×$$\sqrt{\frac{4{k}^{2}}{(1-k)^{2}}-4}$×|k-1|=4,
∴k=$\frac{17}{2}$.
点评 本题考查抛物线的性质,考查三角形面积的计算,正确运用韦达定理是关键.
练习册系列答案
相关题目
16.已知由2x,x2-x组成的集合有且只有4个子集,则实数x的取值范围( )
A. | x=0或x=3 | B. | x≠0或x≠3 | C. | x≠0且x≠3 | D. | 不能确定 |
3.设U=Z,M={x|x=2k,k∈Z},P={x|x=3k,k∈Z},则M∩(CUP)=( )
A. | {x|x=3k±1,k∈Z} | B. | {x|x=4k±1,k∈Z} | C. | {x|x=6k±2,k∈Z} | D. | {x|x=4k或4k+2,k∈Z} |