题目内容

【题目】如图,正方形ABCD中边长为1,P、Q分别为BC、CD上的点,△CPQ周长为2.
(1)求PQ的最小值;
(2)试探究求∠PAQ是否为定值,若是给出证明;不是说明理由.

【答案】
(1)解:设∠CPQ=θ,则CP=PQcosθ,CQ=PQsinθ


(2)解:分别以AB,AD所在直线为x轴、y轴建立平面直角坐标系,

设Q(x,1),P(1,y),设∠DAQ=α,∠PAB=β

,即xy+(x+y)=1

又tanα=x,tanβ=y


【解析】(1)根据△CPQ周长为2,并且△CPQ是直角三角形,设∠CPQ=θ,根据三角函数的定义,CP=PQcosθ,CQ=PQsinθ,因此可以表示出 ,求该函数的最小值即可;(2)利用解析法求解:分别以AB,AD所在直线为x轴、y轴建立平面直角坐标系,设Q(x,1),P(1,y),利用两点间距离公式求出PQ,根据△CPQ周长为2,找出x,y的关系,求出∠PAQ的正切值,即可求得结果.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网