题目内容
【题目】已知椭圆的左,右焦点分别为,,,M是椭圆E上的一个动点,且的面积的最大值为.
(1)求椭圆E的标准方程,
(2)若,,四边形ABCD内接于椭圆E,,记直线AD,BC的斜率分别为,,求证:为定值.
【答案】(1)(2)证明见解析
【解析】
(1)设椭圆E的半焦距为c,由题意可知,当M为椭圆E的上顶点或下顶点时,的面积取得最大值,求出,即可得答案;
(2)根据题意可知,,因为,所以可设直线CD的方程为,将直线代入曲线的方程,利用韦达定理得到的关系,再代入斜率公式可证得为定值.
(1)设椭圆E的半焦距为c,由题意可知,
当M为椭圆E的上顶点或下顶点时,的面积取得最大值.
所以,所以,,
故椭圆E的标准方程为.
(2)根据题意可知,,因为,
所以可设直线CD的方程为.
由,消去y可得,
所以,即.
直线AD的斜率,
直线BC的斜率,
所以
,故为定值.
练习册系列答案
相关题目