题目内容
已知角α终边经过点P(x,-)(x≠0),且cosα=x.求sinα+的值.
解析
已知函数f(x)=sin+cos,x∈R.(1)求f(x)的最小正周期和最小值;(2)已知cos(β-α)=,cos(β+α)=-,0<α<β≤,求证:[f(β)]2-2=0.
已知a=(5cos x,cos x),b=(sin x,2cos x),设函数f(x)=a·b+|b|2+.(1)当∈时,求函数f(x)的值域;(2)当x∈时,若f(x)=8,求函数f的值;(3)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的纵坐标向下平移5个单位,得到函数y=g(x)的图象,求函数g(x)的表达式并判断奇偶性.
已知函数f(x)=sinsin(+).(1)求函数f(x)在[-π,0]上的单调区间.(2)已知角α满足α∈(0,),2f(2α)+4f(-2α)=1,求f(α)的值.
已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=时,f(x)的最大值为2.(1)求f(x)的解析式.(2)在闭区间[,]上是否存在f(x)的对称轴?如果存在求出其对称轴.若不存在,请说明理由.
已知点在函数的图象上,直线、是图象的任意两条对称轴,且的最小值为.(1)求函数的单递增区间和其图象的对称中心坐标;(2)设,,若,求实数的取值范围.
函数f(x)=Asin +1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为.(1)求函数f(x)的解析式;(2)设α∈,f=2,求α的值.
已知函数(其中)的部分图象如图所示.(1)求函数的解析式;(2)求函数的单调增区间;(3)求方程的解集.
已知函数f(x)=tan.(1)求f的值;(2)设α∈,若f=2,求cos的值.