ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Ä³Ð½¨Ð¡ÇøÓÐһƬ±ß³¤Îª1£¨µ¥Î»£º°ÙÃ×£©µÄÕý·½ÐÎÊ£ÓàµØ¿éABCD£¬Öм䲿·ÖMNKÊÇһƬ³ØÌÁ£¬³ØÌÁµÄ±ßÔµÇúÏ߶ÎMNΪº¯Êýy=
(
¡Üx¡Ü
)µÄͼÏó£¬ÁíÍâµÄ±ßÔµÊÇƽÐÐÓÚÕý·½ÐÎÁ½±ßµÄÖ±Ï߶Σ®ÎªÁËÃÀ»¯¸ÃµØ¿é£¬¼Æ»®ÐÞÒ»Ìõ´©Ô½¸ÃµØ¿éµÄֱ·£¨¿í¶È²»¼Æ£©£¬Ö±Â·lÓëÇúÏ߶ÎMNÏàÇУ¨Çеã¼ÇΪP£©£¬²¢°Ñ¸ÃµØ¿é·ÖΪÁ½²¿·Ö£®¼ÇµãPµ½±ßAD¾àÀëΪt£¬f£¨t£©±íʾ¸ÃµØ¿éÔÚֱ·×óϲ¿·ÖµÄÃæ»ý£®
£¨1£©Çóf£¨t£©µÄ½âÎöʽ£»
£¨2£©ÇóÃæ»ýS=f£¨t£©µÄ×î´óÖµ£®
2 |
9x |
1 |
3 |
2 |
3 |
£¨1£©Çóf£¨t£©µÄ½âÎöʽ£»
£¨2£©ÇóÃæ»ýS=f£¨t£©µÄ×î´óÖµ£®
£¨1£©ÒòΪy=
£¬ËùÒÔy¡ä=-
£¬ÓÖP£¨t£¬
£©£¬
ËùÒÔ¹ýµãPµÄÇÐÏß·½³ÌΪy-
=-
(x-t)£¬¼´y=-
x+
£¬
Áîx=0£¬µÃy=
£¬Áîy=0£¬µÃx=2t£®
ËùÒÔÇÐÏßÓëxÖá½»µãE£¨2t£¬0£©£¬ÇÐÏßÓëyÖá½»µãF(0£¬
)£®
¢Ùµ±
£¬¼´
¡Üt¡Ü
ʱ£¬ÇÐÏß×óÏ·½µÄÇøÓòΪһֱ½ÇÈý½ÇÐΣ¬
ËùÒÔf(t)=
¡Á2t¡Á
=
£»
¢Úµ±
£¬¼´
£¼t¡Ü
ʱ£¬ÇÐÏß×óÏ·½µÄÇøÓòΪһֱ½ÇÌÝÐΣ¬
f(t)=
(
+
)•1=
£»
¢Ûµ±
£¬¼´
¡Üt£¼
ʱ£¬ÇÐÏß×óÏ·½µÄÇøÓòΪһֱ½ÇÌÝÐΣ¬
ËùÒÔf(t)=
(
+2t)•1=2t-
t2£®
×ÛÉÏf(t)=
£®
£¨2£©µ±
¡Üt£¼
ʱ£¬f(t)=2t-
t2=-
(t-
)2+
£¼
£¬
µ±
£¼t¡Ü
ʱ£¬f(t)=
=-
(
-2)2+
£¼
£¬
ËùÒÔSmax=
£®
ËùÒÔÃæ»ýS=f£¨t£©µÄ×î´óֵΪ
£®
2 |
9x |
2 |
9x2 |
2 |
9t |
ËùÒÔ¹ýµãPµÄÇÐÏß·½³ÌΪy-
2 |
9t |
2 |
9t2 |
2 |
9t2 |
4 |
9t |
Áîx=0£¬µÃy=
4 |
9t |
ËùÒÔÇÐÏßÓëxÖá½»µãE£¨2t£¬0£©£¬ÇÐÏßÓëyÖá½»µãF(0£¬
4 |
9t |
¢Ùµ±
|
4 |
9 |
1 |
2 |
ËùÒÔf(t)=
1 |
2 |
4 |
9t |
4 |
9 |
¢Úµ±
|
1 |
2 |
2 |
3 |
f(t)=
1 |
2 |
4 |
9t |
4t-2 |
9t2 |
4t-1 |
9t2 |
¢Ûµ±
|
1 |
3 |
4 |
9 |
ËùÒÔf(t)=
1 |
2 |
4t-9t2 |
2 |
9 |
4 |
×ÛÉÏf(t)=
|
£¨2£©µ±
1 |
3 |
4 |
9 |
9 |
4 |
9 |
4 |
4 |
9 |
4 |
9 |
4 |
9 |
µ±
1 |
2 |
2 |
3 |
4t-1 |
9t2 |
1 |
9 |
1 |
t |
4 |
9 |
4 |
9 |
ËùÒÔSmax=
4 |
9 |
ËùÒÔÃæ»ýS=f£¨t£©µÄ×î´óֵΪ
4 |
9 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿