题目内容

9.已知a,b,c,d为实数,满足a+b=c+d=1,ac+bd>1,则在a,b,c,d中(  )
A.有且仅有一个为负B.有且仅有两个为负
C.至少有一个为负D.都为正数

分析 利用反证法进行证明,假设a、b、c、d都是非负数,找出矛盾即可.

解答 证明:假设a、b、c、d都是非负数,
∵a+b=c+d=1,
∴(a+b)(c+d)=1.
∴ac+bd+bc+ad=1≥ac+bd.
这与ac+bd>1矛盾.
所以假设不成立,即a、b、c、d中至少有一个负数

点评 此题考查反证法:从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网