ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖª¶¯µãAÔÚÍÖÔ² C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÉÏ£¬¶¯µãBÔÚÖ±Ïß x=-2ÉÏ£¬ÇÒÂú×ã $\overrightarrow{OA}$¡Í$\overrightarrow{OB}$£¨OΪ×ø±êԵ㣩£¬ÍÖÔ²CÉϵã $M£¨\frac{{\sqrt{3}}}{2}£¬3£©$µ½Á½½¹µã¾àÀëÖ®ºÍΪ 4$\sqrt{3}$£¨¢ñ£©ÇóÍÖÔ²C·½³Ì£®
£¨¢ò£©ÅжÏÖ±ÏßABÓëÔ²x2+y2=3µÄλÖùØϵ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒ⣬$\left\{\begin{array}{l}{2a=4\sqrt{3}}\\{\frac{9}{{a}^{2}}+\frac{3}{4{b}^{2}}=1}\end{array}\right.$£¬Çó³öa£¬b£¬¼´¿ÉÇóÍÖÔ²C·½³Ì£®
£¨¢ò£©Éè³öµãA£¬BµÄ×ø±ê·Ö±ðΪ£¨x0£¬y£©£¬£¨-2£¬t£©£¬Ö±ÏßABµÄ·½³ÌΪ£¨y0-t£©x-£¨x0+2£©y+£¨tx0+2y0£©=0£¬ÓÉOA¡ÍOBµÃµ½t=$\frac{2{x}_{0}}{{y}_{0}}$£¬È»ºóÓÉÔ²x2+y2=3µÄÔ²Ðĵ½ABµÄ¾àÀëºÍÔ²µÄ°ë¾¶ÏàµÈ˵Ã÷Ö±ÏßABÓëÔ²x2+y2=3ÏàÇУ®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬$\left\{\begin{array}{l}{2a=4\sqrt{3}}\\{\frac{9}{{a}^{2}}+\frac{3}{4{b}^{2}}=1}\end{array}\right.$£¬
¡àa=2$\sqrt{3}$£¬b=$\sqrt{3}$£¬
¡àÍÖÔ²C·½³ÌΪ$\frac{{y}^{2}}{12}+\frac{{x}^{2}}{3}=1$£®
£¨¢ò£©Ö±ÏßABÓëÔ²x2+y2=3ÏàÇУ¬
Ö¤Ã÷ÈçÏ£º
ÉèµãA£¬BµÄ×ø±ê·Ö±ðΪ£¨x0£¬y0£©£¬£¨-2£¬t£©£¬Ö±ÏßABµÄ·½³ÌΪ£¨y0-t£©x-£¨x0+2£©y+£¨tx0+2y0£©=0£®
¡ßOA¡ÍOB£¬
¡à$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£¬¼´-2x0+ty0=0£¬½âµÃt=$\frac{2{x}_{0}}{{y}_{0}}$£®
Ô²ÐÄOµ½Ö±ÏßABµÄ¾àÀëd=$\frac{|t{x}_{0}+2{y}_{0}|}{\sqrt{£¨{y}_{0}-t£©^{2}+£¨{x}_{0}+2£©^{2}}}$=$\frac{6|4-{{x}_{0}}^{2}|}{\sqrt{12£¨{{x}_{0}}^{4}-8{{x}_{0}}^{2}+16£©}}$=$\sqrt{3}$
¡àÖ±ÏßABÓëÔ²x2+y2=3ÏàÇУ®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÁËÔ²ÓëԲ׶ÇúÏßµÄ×ۺϣ¬ÑµÁ·ÁËÓÉÔ²Ðĵ½Ö±ÏߵľàÀëÅжÏÖ±ÏߺÍÔ²µÄλÖùØϵ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | $\frac{3}{10}$ | B£® | $\frac{2}{5}$ | C£® | $\frac{3}{8}$ | D£® | $\frac{3}{5}$ |
A£® | £¨-1£¬2£© | B£® | £¨-2£¬1£© | C£® | £¨-2£¬+¡Þ£© | D£® | £¨-1£¬+¡Þ£© |
A£® | c£¾b£¾a | B£® | a£¾b£¾c | C£® | b£¾a£¾c | D£® | b£¾c£¾a |