题目内容

【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;

(2)①建立月总成本y与月产量x之间的回归方程;

②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?

(均精确到0.001)

附注:①参考数据:

②参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

【答案】(1)见解析;(2)①;②3.385万元.

【解析】

1)由已知条件利用公式,求得的值,再与比较大小即可得结果;(2)根据所给的数据,做出变量的平均数,根据样本中心点一定在线性回归方程上,求出的值,写出线性回归方程;将代入所求线性回归方程求出对应的的值即可.

(1)由已知条件得:

这说明正相关,且相关性很强.

(2)①由已知求得

所以所求回归直线方程为

②当时,(万元),

此时产品的总成本为3.385万元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网