题目内容
已知向量,若,则实数= .
8
【解析】
试题分析:因为,所以而所以向量的数量积的坐标表示
考点:向量的数量积,向量的垂直的坐标表示.
对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.
(1) 判断函数是否为 “()型函数”,并说明理由;
(2) 若函数是“()型函数”,求出满足条件的一组实数对;
(3)已知函数是“()型函数”,对应的实数对为(1,4).当 时,,若当时,都有,试求的取值范围.
已知函数是定义域为R的奇函数.当时,,图像如图所示.
(Ⅰ)求的解析式;
(Ⅱ)若方程有两解,写出的范围;
(Ⅲ)解不等式,写出解集.
集合,,则 .
如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是 .
已知点在第二象限,则角的终边在第 象限.
已知函数是定义在上的偶函数,当时,。
(1)求的函数解析式,并用分段函数的形式给出;
(2)作出函数的简图;
(3)写出函数的单调区间及最值.
已知圆,设点是直线上的两点,它们的横坐标分别是,点在线段上,过点作圆的切线,切点为.
(1)若,求直线的方程;
(2)经过三点的圆的圆心是,求线段(为坐标原点)长的最小值.
集合A是由适合以下性质的函数构成的:对于定义域内任意两个不相等的实数,都有.
(1)试判断=及是否在集合A中,并说明理由;
(2)设?A且定义域为?0,??,值域为?0,1?,,试写出一个满足以上条件的函数的解析式,并给予证明.