题目内容
(2013•松江区一模)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x不超过4(尾/立方米)时,v的值为2(千克/年);当4≤x≤20时,v是x的一次函数;当x达到20(尾/立方米)时,因缺氧等原因,v的值为0(千克/年).
(1)当0<x≤20时,求函数v(x)的表达式;
(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)f(x)=x•v(x)可以达到最大,并求出最大值.
(1)当0<x≤20时,求函数v(x)的表达式;
(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)f(x)=x•v(x)可以达到最大,并求出最大值.
分析:(1)由题意:当0<x≤4时,v(x)=2.当4<x≤20时,设v(x)=ax+b,v(x)=ax+b在[4,20]是减函数,由已知得
,能求出函数v(x).
(2)依题意并由(1),得f(x)=
,当0≤x≤4时,f(x)为增函数,由此能求出fmax(x)=f(4),由此能求出结果.
|
(2)依题意并由(1),得f(x)=
|
解答:解:(1)由题意:当0<x≤4时,v(x)=2.…(2分)
当4<x≤20时,设v(x)=ax+b,显然v(x)=ax+b在[4,20]是减函数,
由已知得
,
解得
…(4分)
故函数v(x)=
…(6分)
(2)依题意并由(1),
得f(x)=
,…(8分)
当0≤x≤4时,f(x)为增函数,
故fmax(x)=f(4)=4×2=8.…(10分)
当4≤x≤20时,f(x)=-
x2+
x=-
(x2-20x)=-
(x-10)2+
2,
fmax(x)=f(10)=12.5.…(12分)
所以,当0<x≤20时,f(x)的最大值为12.5.
当养殖密度为10尾/立方米时,
鱼的年生长量可以达到最大,最大值约为12.5千克/立方米.…(14分)
当4<x≤20时,设v(x)=ax+b,显然v(x)=ax+b在[4,20]是减函数,
由已知得
|
解得
|
故函数v(x)=
|
(2)依题意并由(1),
得f(x)=
|
当0≤x≤4时,f(x)为增函数,
故fmax(x)=f(4)=4×2=8.…(10分)
当4≤x≤20时,f(x)=-
1 |
8 |
5 |
2 |
1 |
8 |
1 |
8 |
100 |
8 |
fmax(x)=f(10)=12.5.…(12分)
所以,当0<x≤20时,f(x)的最大值为12.5.
当养殖密度为10尾/立方米时,
鱼的年生长量可以达到最大,最大值约为12.5千克/立方米.…(14分)
点评:本题考查函数表达式的求法,考查函数最大值的求法及其应用,解题时要认真审题,注意函数有生产生活中的实际应用.
练习册系列答案
相关题目