题目内容

已知平面向量
a
=(
3
,-1),
b
=(
1
2
3
2
).
(1)证明:
a
b

(2)若存在实数k和t,使得x=
a
+(t2-3)
b
,y=-k
a
+t
b
,且x⊥y,试求函数关系式k=f(t);
(3)根据(2)的结论,确定k=f(t)的单调区间.
分析:(1)只要证明
a
b
=0,即可证明a⊥b
(2)根据
x
y
可得,
x
y
=0,再化简,即可得到含t和k的式子,用t表示k,可得函数关系式k=f(t).
(3)利用导数求单调区间,先求导,k′<0得到,函数的减区间,令k′>0得到函数的增区间.
解答:解:(1)证明:∵
a
=(
3
,-1),
b
=(
1
2
3
2

3
×
1
2
+(-1)×
3
2
=0,∴
a
b
  …(4分)
(2)由题意知
x
=(
t2+2
3
-3
2
3
t2-3
3
-2
2
),
y
=(
1
2
t-
3
k,
3
2
t+k)
x
y
x
y
=
t2+2
3
-3
2
×(
1
2
t-
3
k)+
3
t2-3
3
-2
2
×(
3
2
t+k)=0
整理得:t3-3t-4k=0即k=
1
4
t3-
3
4
t  …(4分)
(3)由(2)知:k=f(t)=
1
4
t3-
3
4
t
∴k′=f′(t)=
3
4
t2-
3
4

令k′<0得-1<t<1;t<-1或t>1
故k=f(t)单调递减区间是(-1,1),单调递增区间是(-∞,-1)∪(1,+∞).…(4分)
点评:本题考查了向量垂直充要条件的应用,以及导数求单调区间,属于基础题,应该掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网