题目内容
13.函数f(x)=$\left\{\begin{array}{l}{\sqrt{x}-1,x≥0}\\{2cosx-1,-2π≤x<0}\end{array}\right.$的所有零点的和等于( )A. | 1-2π | B. | 1-$\frac{3π}{2}$ | C. | 1-π | D. | 1-$\frac{π}{2}$ |
分析 根据函数的零点即是方程的解,解方程即可.
解答 解:当x≥0时,f(x)=$\sqrt{x}$-1=0,解得x=1,
当-2π≤x<0时,f(x)=2cosx-1=0,解得cosx=$\frac{1}{2}$,x=-$\frac{π}{3}$,或x=-$\frac{5π}{3}$,
∴1-$\frac{π}{3}$-$\frac{5π}{3}$=1-2π
所以所有零点的和等于1-2π,
故选:A
点评 本题考查了函数的零点定理和余弦函数的图象的性质,属于基础题.
练习册系列答案
相关题目
18.已知函数f(x)=$\frac{1}{2}$sin2x+$\sqrt{3}$cos2x,则f(x)的最小正周期是π;如果f(x)的导函数是f′(x),则f′($\frac{π}{6}$)=-1.
5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=4x有一个公共的焦点F,且两曲线的一个交点为P.若|PF|=$\frac{5}{2}$,则双曲线的渐近线方程为( )
A. | y=±$\frac{1}{2}$x | B. | y=±2x | C. | y=±$\sqrt{3}$x | D. | y=±$\frac{\sqrt{3}}{3}$x |
3.已知函数f(x)=3sin(ωx-$\frac{π}{6}$)(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,若x∈[0,$\frac{π}{2}$],则f(x)的取值范围是( )
A. | [-3,3] | B. | [-$\frac{3}{2}$,$\frac{3}{2}$] | C. | [-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$] | D. | [-$\frac{3}{2}$,3] |