题目内容

20.已知sin(π-α)-sin($\frac{3π}{2}$+α)=$\frac{\sqrt{2}}{3}$($\frac{3π}{2}$<α<2π),求:
(1)sin3α+cos3α的值;
(2)sin4α-cos4α的值.

分析 由已知可得sinα+cosα=$\frac{\sqrt{2}}{3}$,sinαcosα=-$\frac{7}{18}$,sinα-cosα=-$\frac{4}{3}$,进而利用立方和公式及平方差公式,可得答案.

解答 解:∵sin(π-α)-sin($\frac{3π}{2}$+α)=sinα+cosα=$\frac{\sqrt{2}}{3}$($\frac{3π}{2}$<α<2π)
∴sinαcosα=$\frac{1}{2}$[(sinα+cosα)2-1]=-$\frac{7}{18}$,
∴(sinα-cosα)2=1+2×$\frac{7}{18}$=$\frac{16}{9}$,
∴sinα-cosα=-$\frac{4}{3}$
(1)sin3α+cos3α=(sinα+cosα)(sin2α-sinαcosα+cos2α)=$\frac{\sqrt{2}}{3}$(1+$\frac{7}{18}$)=$\frac{25\sqrt{2}}{54}$;
(2)sin4α-cos4α=(sin2α+cos2α)(sin2α-cos2α)=sin2α-cos2α=(sinα+cosα)(sinα-cosα)=$\frac{\sqrt{2}}{3}$×(-$\frac{4}{3}$)=-$\frac{4\sqrt{2}}{9}$

点评 本题考查的知识点是诱导公式,同角三角函数基本关系公式,立方和公式及平方差公式,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网